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1 Introduction

The fields of computer science andmathematics are very closely intertwined, and results or tools from
one discipline often wind up supporting results in the other. An active area of research in programming
language theory has been the development of “proof checkers,” “proof assistants,” or “theorem provers.”
These are programming languages which allow precise statements of mathematical theorems and their
proofs, which enables a computer to deterministically check that the proof is correct.

Oneof themostwidespread theoremprovers available today is Lean,1whichhas been adoptednot only
by Fields Medalists Terence Tao2 and Peter Scholze,3 but by the broader mathematics community. It has
also seen adoption by large companies such as Microsoft and Amazon, who use Lean to prove desirable
properties of their systems always hold true.4,5 In fact, one of Lean’s principle developers, Leonardo de
Moura, is a veteran of Microsoft Research and currently works at AmazonWeb Services.

This paper will demonstrate how one uses Lean to formalize some proofs from the textbook while
explaining the proofs themselves and how the Lean translations work under the hood. Simple proofs
are a good way to gain hands-on experience with a technology that is certainly important in the software
verification space, and may eventually be broadly useful in higher mathematics.

2 What is Lean?

We said Lean proves theorems, or checks proofs, but what does it mean for a computer to check a
proof? Is it testing all possible values of the variables to check a proposition holds, or is there a better way?
How can mathematicians or software engineers trust a computer program to prove something complex,
and what advantages does a machine-checked proof offer?

2.1 Teaching Computers to Prove Things

The answer to the first question comes fromprogramming language theory. In an older programming
language like Pascal or C all variables are of some fixed datatype. The idea of a datatype was originally
invented to specify a layout in physical memory; e.g. a uint16_t represents an unsigned integer of 16 bits.
A datatype is somewhat like the mathematical concept of a set, because any particular uint16_t can take
on an integer value from 0 to 216 −1. Importantly, a variable’s datatype must be known before the code is

1. Leonardo de Moura and Sebastian Ullrich, “The Lean 4 Theorem Prover and Programming Language,” in Automated
Deduction – CADE 28: 28th International Conference on AutomatedDeduction, Virtual Event, July 12–15, 2021, Proceedings (Berlin,
Heidelberg: Springer-Verlag, 2021), 625–635, isbn: 978-3-030-79875-8, https : / / doi . org / 10 . 1007 / 978 - 3 - 030 - 79876 - 5 _ 37,
https://doi.org/10.1007/978-3-030-79876-5_37.

2. Terence Tao, A Lean companion to “Analysis I”, terrytao.wordpress.com, May 31, 2025, accessed December 6, 2025, https:
//terrytao.wordpress.com/2025/05/31/a-lean-companion-to-analysis-i/.

3. Kevin Hartnett, Proof Assistant Makes Jump to Big-League Math, Quanta Magazine, June 28, 2021, accessed December 6,
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4.Rewriting SymCrypt in Rust to modernize Microsoft’s cryptographic library, Microsoft, Inc., accessed December 8, 2025,
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library/.
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ever run. The compiler determines datatypes from the context, and makes sure they match the expected
types in a process called typechecking.

Pascal andC required programmers to label every variable with a type, but algorithms were developed
which allowed programmers to omit type labels and have the compiler infer them instead. The earliest
example was AlgorithmW, or the Hindley-Milner type system. These “type inference” algorithms gained
power and became the modern theorem prover.

A concrete example would be the statement 1 + 1 = 2. In Pascal this has datatype boolean, meaning
it has a value from the set {true, false}. However in Lean, this has type Prop, which is very different. In
some sense the Pascal boolean resolved to the value true. A Prop in Lean does not resolve to anything. The
statement 1 + 1 = 2 is a value all by itself. If boolean is the set {true, false}, then Lean’s Prop is the set of
all logical propositions in Lean.

If Leanwon’t resolve 1 + 1 = 2 to be true or false, how dowe knowwhich it is? The answer is that we
have to give Lean a proof of that fact. Lean’s magic is that a proposition like 1 + 1 = 2 is also a type, and
any proof of the proposition is a value of that type. Then a proof is valid if Lean’s typechecker accepts it.

2.2 Why Bother?

The second question is more philosophical. The algorithm that infers and checks types in Lean is
fairly straightforward, and relatively little code is dedicated to implementing it. So as long as users trust
this typechecking algorithm and the code that implements it (the kernel), then they can trust any proof it
accepts. If there’s no bug in the kernel, Lean will only accept proofs that follow from the chosen axioms.

The advantages of Lean to mathematicians and software engineers come from the fact that Lean is
code. For the last thirty years, developers have built tools to allowmassive collaboration on codebases, such
as Git. Nowmathematicians are able to use these existing tools for collaboration on large-scale verification
efforts, like the project to formalize Wiles’ proof of Fermat’s Last Theorem.6

3 First Steps & Basic Examples

Lean is much easier to understand through examples, and simple examples make for the best starting
points. Typically proofs of theorems are written out in the normal way before they’re ever translated to
Lean. Sometimes even stating the theorem in a formal way (read “encoding it as a proposition in Lean”)
is difficult. So, for the first example we’ll write out the theorem and prove it in English, and then present
the formalization in Lean.

Because Lean can be used in many fields of mathematics where nice algebraic properties might not
hold, it allows very careful control of steps in a proof. We can demonstrate this with a couple of extremely
simple theorems that really need no proof in English. However, it’s important that we be able to justify
them to a computer.

Theorem 1. 1 + 1 = 2.
6. Kevin Buzzard, The Fermat’s Last Theorem Project, Lean Community Blog, April 30, 2024, accessed December 7, 2025,

https://leanprover-community.github.io/blog/posts/FLT-announcement/.

https://leanprover-community.github.io/blog/posts/FLT-announcement/


exploring foundations with lean 3

Proof. 1 + 1 becomes 2 by definition of addition on the integers, and 2 = 2 is true because equality is
reflexive.

In Lean this looks like:

1 theorem one_plus_one_eq_two : 1 + 1 = 2 :) by rfl

Breaking it down, the theorem keyword tells Leanwe are stating a proposition. Next it expects a name
for the theorem (we chose one_plus_one_eq_two for no particular reason). After the colon is the actual
statement of the theorem. Then there’s the :) and the right-hand side, by rfl, which means “reflexive.”
The tactic rfl just proves anything of the form 𝑎 = 𝑎. Instructions like rfl

are called “tactics,”
and we’ll make use of
more tactics in other
proofs.

This might feel familiar to users of typed languages like Pascal. For example, compare the Lean code
above with this Pascal code:

1 var counter : int := 5;

In the line of Pascal, var tells Pascal to expect a variable name, counter, which is followed by a colon
and type annotation int, then the assignment operator :) and the particular value from the datatype int
that we choose, 5. The Lean code has exactly the same structure, but with theorem instead of var and 1
+ 1 = 2 where the type is supposed to be. But recall that in Lean, propositions are types themselves, so
this is actually a type annotation! Then the right-hand side of the assignment operator :) is one particular
value from the datatype, or one particular proof of 1 + 1 = 2. Lean does the addition automatically since
it knows about the integers, and uses rfl to close the proof.

The first example is nice, but not very useful. This examplewill demonstrate using a variable in a proof
of the following theorem. It also introduces a new tactic, rw, whichmeans “rewrite,” and uses a list of facts
we know to rewrite the statement we’re trying to prove.

Theorem 2. If 𝑥 = 1, then 𝑥 + 1 = 2.

Proof. The left-hand side is 1 + 1 by substitution, and 1 + 1 = 2 by the previous theorem.

1 theorem x_plus_one_eq_two {x : ℤ} (hx : x = 1) : x + 1 = 2 :) by rw [hx]; rfl

This theorem has two extra things on the left-hand side of the assignment. Both are hypotheses. The
first, x : ℤ, says 𝑥 is an integer, and the second is a hypothesis named hx, which says 𝑥 = 1. On the
right-hand side, rw [hx] tells Lean to rewrite all occurences of 𝑥 as 1, since hx tells us that 𝑥 = 1. Then we
have the same goal as the last theorem, and we prove it with rfl again.

Theorem 3. The product of odd numbers is odd.

Proof. Let𝑚 and 𝑛 be odd integers, that is𝑚 = 2𝑎 + 1 and 𝑛 = 2𝑏 + 1 for some integers 𝑎 and 𝑏. Then

𝑚𝑛 = (2𝑎 + 1)(2𝑏 + 1)
= 4𝑎𝑏 + 2𝑎 + 2𝑏 + 1
= 2(2𝑎𝑏 + 𝑎 + 𝑏) + 1.
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Let 𝑘 = 2𝑎𝑏 + 𝑎 + 𝑏. We know 𝑘 ∈ ℤ because the integers are closed under multiplication and addition,
so𝑚𝑛 has the form 2𝑘 + 1, which is exactly the definition of an odd integer. Thus𝑚𝑛 is odd.

This is a straightforward proof, so we might hope it translates well to Lean. However, the first step is
to state the theorem formally. We’re saying that given two numbers of the forms 2𝑎 + 1 and 2𝑏 + 1, their
product is 2𝑘 + 1where 𝑘 = 2𝑎𝑏 + 𝑎 + 𝑏. Here’s a direct translation of that idea:

1 theorem prod_odd_integers_is_odd {x y m n k : ℤ}
2 (hx : x = 2 * m + 1) (hy : y = 2 * n + 1)
3 (hk : k = 2 * m * n + m + n)
4 : x * y = 2 * k + 1 :) by sorry

Right now this proof
says by sorry, which
is a way of telling
Lean that we aren’t
ready to prove it yet.

Once again, notice how Lean is using the type system. The theorem’s type is x * y = 2 * k + 1, so
the assignment operator is expecting a value of that type, or a proof of that fact. Here the right-hand side
is something different.

Let’s walk through our first formalized proof for this theorem.

1 theorem prod_odd_integers_is_odd {x y m n k : ℤ}
2 (hx : x = 2 * m + 1) (hy : y = 2 * n + 1)
3 (hk : k = 2 * m * n + m + n)
4 : x * y = 2 * k + 1 :) by
5 calc
6 x * y = (2 * m + 1) * (2 * n + 1) :) by rw [hx, hy]
7 _ = 2 * (2 * m * n + m + n) + 1 :) by linarith
8 _ = 2 * k + 1 :) by rw [hk]

The theorem is the same, except now we have a proof body instead of sorry. This is called a calc
block, and it’s used to prove things involving transitive relations. This one walks through all the steps of
the arithmetic in the English proof. Each line has a tactic for its justification. The new tactic linarith
means high-school algebra. The “_ =” notation is just dragging the equality down the page.

It turns out linarith is very powerful. We can shorten this proof without using a calc block at all;
linarithwill simplify everything directly.

1 theorem prod_odd_integers_is_odd {x y m n k : ℤ}
2 (hx : x = 2 * m + 1) (hy : y = 2 * n + 1)
3 (hk : k = 2 * m * n + m + n)
4 : x * y = 2 * k + 1 :) by rw [hx, hy]; linarith

Even though it’s shorter, it’s still a pretty disgusting way to write this. It would be much nicer to have
a conclusion like (x * y) odd or something. Fortunately Lean comes with a definition of what it means
to be even or odd, and we can use it directly in this next version of the proof.

1 theorem prod_odd_integers_is_odd2 {m n : ℤ}
2 (hm : Odd m) (hn : Odd n)
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3 : Odd (m * n) :) by
4 rcases hm with ⟨a, ha⟩
5 rcases hn with ⟨b, hb⟩
6

7 rw [ha, hb]
8

9 use 2 * a * b + a + b
10

11 linarith

This uses Lean’s proposition Odd, as well as the rcases tactic, which deconstructs a hypothesis into
its components. For example, hm becomes a variable 𝑎 and a hypothesis ha that𝑚 = 2𝑎 + 1. By applying
rcases twice, and substituting these new variables and equations into the expression𝑚𝑛, we get that𝑚𝑛 =
2(2𝑎𝑏 + 𝑎 + 𝑏) + 1. We use 2𝑎𝑏 + 𝑎 + 𝑏 as our 𝑘 in the oddness proposition that𝑚𝑛 = 2𝑘 + 1. Finally we
simplify by linarith and we’re done.

4 Proofs by Contradiction

At this point we’ve met nearly all the tools we’ll need for more complicated types of proof, such as
proof by contradiction. The classic example of proof by contradiction is the proof that √2 ∉ ℚ, so we’ll
try that next.

4.1 Proof that Square Root of Two is Irrational

There are a couple of points to keep inmind thatwillmake the proofmuch easier to do. One is thatwe
can prove any statement that’s equivalent to√2 ∉ ℚ, andwe’ve proven the original statement. Thatmeans
we can choose whichever form of the problem suits us best. Two is that Lean providesmany theorems and
definitions already, andwe can invoke some of these to avoid reinventing thewheel. We’ll avoid definitions
that aren’t in the course’s textbook.

Nowwemust decide what form of the statement to prove. If √2 ∉ ℚ, then there are no integers 𝑝 and
𝑞 such that √2 = 𝑝

𝑞 . However, in this form, we have to worry about whether 𝑞 is zero at multiple stages
during the proof. This statement is algebraically equivalent to saying that 𝑞√2 = 𝑝, and that seems nicer.
Better still, we can square both sides to get 2𝑞2 = 𝑝2. Now we only have to deal with integers.

Recall that the crucial assumption in this proof is that 𝑝 and 𝑞 are relatively prime (coprime). This just
means they have no common factors greater than 1. Lean provides a definition of “coprime,” but it won’t
help us much. We can use Lean’s definition of GCD to express this idea instead. We’re ready to state the
theorem in Lean. Notice the hypothesis we provide, that p.gcd q = 1, which is Lean’s way of writing
gcd(𝑝, 𝑞) = 1.

1 theorem root_two_irrational {p q : ℤ} (hmn : p.gcd q = 1) : p ^ 2 ≠ 2 * q ^ 2 :) by
2 sorry
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Since this is a proof by contradiction, we have to tell Lean to expect a contradiction to occur. We do
this with the line by_contra h, which says we’re assuming the negation of the thing we want to prove and
naming that hypothesis h. Then it will begin to look for things it knows which conflict. The algorithm
that finds contradictions is pretty good, but it can’t see the contradiction at this stage. We have to explain
ourselves. We’re going to use some have blocks to establish other facts we know. There are two copies of

the hypothesis that
2 ∣ 𝑝. We will
“destroy” one of them
later, so I declared a
copy with a tick after
the name.

We also need to invoke other facts Lean already knows. One is that if 𝑝 is prime, and 𝑝 ∣ 𝑎𝑛, then 𝑝 ∣ 𝑎.
This theorem has a name in Lean, which is Prime.dvd_of_dvd_pow.7 It needs two hypotheses. One, that
𝑝 is actually prime (Lean knows 2 is prime, and that theorem is Int.prime_two), and two, that 𝑝 ∣ 𝑎𝑛 for
some integer 𝑎. That’s why we need hq_sq_even, which says 2 ∣ 𝑞2. Watch for that on line 4.

1 theorem root_two_irrational {p q : ℤ} (hmn : p.gcd q = 1) : p ^ 2 ≠ 2 * q ^ 2 :) by
2 by_contra h
3 have hp_sq_even : 2 ∣ p ^ 2 :) by use q ^ 2
4 have hp_even : 2 ∣ p :) by exact Prime.dvd_of_dvd_pow Int.prime_two hp_sq_even
5 have hp_even' : 2 ∣ p :) by exact hp_even
6 sorry

Now that we know 𝑝 is even, we can explore what that implies. There must be some 𝑘 ∈ ℤ such that
2𝑘 = 𝑝, and we can tell Lean that with the rcases trick we saw at the end of the last section.

1 theorem root_two_irrational {p q : ℤ} (hmn : p.gcd q = 1) : p ^ 2 ≠ 2 * q ^ 2 :) by
2 by_contra h
3 have hp_sq_even : 2 ∣ p ^ 2 :) by use q ^ 2
4 have hp_even : 2 ∣ p :) by exact Prime.dvd_of_dvd_pow Int.prime_two hp_sq_even
5 have hp_even' : 2 ∣ p :) by exact hp_even
6

7 rcases hp_even' with ⟨k, hk⟩
8 · rw [hk, mul_pow] at h
9 dsimp at h; symm at h
10 have hq_sq : q ^ 2 = 2 * k ^ 2 :) by linarith
11 have hq_sq_even : 2 ∣ q ^ 2 :) by use k ^ 2
12 have hq_even : 2 ∣ q :) by exact Prime.dvd_of_dvd_pow Int.prime_two hq_sq_even
13 sorry

The rcases trick is what “destroys” or “destructures” the copy of hp_even. It gives us a new variable
𝑘, and the hypothesis hk, or 𝑝 = 2𝑘. The two lines after that do substitution and transform our main
hypothesis h into 4𝑘2 = 2𝑞2. Lines 10, 11, and 12 allow us to conclude that 2 ∣ 𝑞 as well. From line 4, we
know 2 ∣ 𝑝. Now we’re ready to go for the contradiction. The last three lines of the proof are below. These lines replace the

sorry on line 13 above.
13 have h_dvd_gcd : 2 ∣ p.gcd q :) by exact Int.dvd_gcd hp_even hq_even
14 rw [hmn] at h_dvd_gcd
15 contradiction

7. Documentation: leanprover-community.github.io/mathlib4_docs/

https://leanprover-community.github.io/mathlib4_docs/Mathlib/Algebra/Prime/Defs.html#Prime.dvd_of_dvd_pow
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Line 13 invokes a theorem provided by Lean, Int.dvd_gcd. This says that if 𝑐 ∣ 𝑎 and 𝑐 ∣ 𝑏 then
𝑐 ∣ gcd(𝑎, 𝑏). It takes as “arguments” the hypotheses that 2 ∣ 𝑝 and 2 ∣ 𝑞, and gives us the result that
2 ∣ gcd(𝑝, 𝑞). Yet we know by hypothesis hmn that gcd(𝑝, 𝑞) is 1, so we can rewrite that. Lean is now faced
with the false statement we have just proved, that 2 ∣ 1, and we declare a contradiction.

4.2 Proof that an Irrational Product has an Irrational Factor

This section will demonstrate another proof by contradiction, as well as how to write our own defini-
tions and use some more powerful proof tactics. Let’s prove it in English first, and then translate that to
Lean.

Theorem 4. If 𝑎 is rational and for some real number 𝑏, 𝑎𝑏 is not rational, then 𝑏 is irrational.

Proof. Suppose for the sake of contradiction that 𝑏 is rational. Since 𝑎 is rational, we can say 𝑎 = 𝑚
𝑛 for

some𝑚, 𝑛 ∈ ℤwith 𝑛 ≠ 0, and since 𝑏 is rational, we can say 𝑏 = 𝑟
𝑠 for some 𝑟, 𝑠 ∈ ℤwith 𝑠 ≠ 0. Then the

product of 𝑎 and 𝑏 can be expressed as

𝑎𝑏 = (𝑚𝑛 )
𝑟
𝑠 =

𝑚𝑛
𝑟𝑠 ,

which, since by closure of the integers undermultiplication𝑚𝑛 and 𝑟𝑠 are integers with 𝑟𝑠 ≠ 0, is a rational
number. Yet we assumed at the outset that 𝑎𝑏was irrational, thus we have a contradiction, and 𝑏must be
irrational.

To translate this theorem into Lean, we first need an idea of what it means to be a rational number.
Lean provides definitions for things like these, but we can define our own easily. A number 𝑎 is rational
if there exist some integers 𝑚 and 𝑛 such that 𝑎 = 𝑚

𝑛 . Then in Lean, what we want is a proposition that
these integers exist, given some number 𝑎. Here’s the translation: Remember that the

Lean type Propmeans
any logical proposition.
It’s basically the set of
all propositions.

1 def IsRational (a : ℝ) : Prop :) ∃ m n : ℤ, n ≠ 0 ∧ a = m / n

This is a proposition on some number 𝑎, that there exist𝑚, 𝑛 ∈ ℤ such that 𝑛 ≠ 0 and 𝑎 = 𝑚
𝑛 , as we

desired. Any irrational number is one for which the negation of this is true. Now, our theorem.

3 theorem irrat_prod_of_rat_imp_irrat {a b : ℝ}
4 (ha_rat : IsRational a) (hab : ¬ IsRational (a * b))
5 : ¬ IsRational b :) by
6 by_contra h
7 rcases ha_rat with ⟨m, n, hn_nonzero, ha⟩
8 rcases h with ⟨r, s, hs_nonzero, hb⟩
9 have hab_contra : IsRational (a * b) :) by
10 use (m * r); use (n * s)
11 norm_num; split_ands
12 exact hn_nonzero
13 exact hs_nonzero
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14 rw [ha, hb]; field_simp
15 contradiction

We’ll examine only the new details here. The first line of the proof has the by_contra h tactic, just like
last time. This just gives us an assumption IsRational b. Lines 7 and 8 “decompose” our assumptions
into their component parts. For example, ha_rat, the theorem that 𝑎 is rational, becomes two variables𝑚
and 𝑛, as well as two hypotheses, that 𝑛 ≠ 0 and that 𝑎 = 𝑚

𝑛 .
Line 9 onwards is convincing Lean that 𝑎𝑏 is rational. We tell Lean that the numerator and denom-

inator will be𝑚𝑟 and 𝑛𝑠, then use algebra to simplify expressions and invoke split_ands, which divides
the proposition we’re trying to prove (IsRational) into multiple subpropositions. Lines 12, 13, and 14
resolve each of these, and show that 𝑎𝑏 is rational. We know from hab that this is not the case, so we claim Again, when we want

to apply a theorem we
already know, and
something in the
current context is in
the form it expects, we
use exact.

a contradiction.

5 Proofs by Counterexample

Proof by counterexample is useful when proving or disproving statements with quantifiers. There are
two types of proof by (counter)example. In the first, we’re trying to show a universal quantifier is false.
Then we need an example which fails the predicate. In the second, we’re trying to show an existential
quantifier is true, so we need an example which passes the predicate. Here’s a demonstration of the first
type.

Theorem 5. Prove or disprove: For all real numbers 𝑥, 2𝑥 ≥ 𝑥 + 1.

Proof. Wewill disprove the statement, that is, we’ll prove its negation:

¬∀𝑥 ∈ ℝ, 2𝑥 ≥ 𝑥 + 1 ⟹ ∃𝑥 ∈ ℝ, 2𝑥 < 𝑥 + 1.

We’ll use the example 12 . We know 𝑥 12 = √𝑥, so we just want to show that √2 < 3
2 . We also know that if

√𝑥 < 𝑦 when 𝑥, 𝑦 ≥ 0, then 𝑥 < 𝑦2. (We could do the algebra to get this, or we could just invoke it.) So
now all we have to show is that

• 2 ≥ 0,
• 3
2 ≥ 0,

• and √2 < 3
2 ,

and we can apply that idea. Since all of these are true, we’ve found a counterexample to the original state-
ment.

That was certainly a less clean proof than we could have written, but it translates very well into Lean,
which likes a fine-grained justification for each step. (Again, because it’s built for areas of math where
nice properties don’t always work.) In fact, the proof written as above looks almost exactly like the Lean
version.

3 theorem counterexampledemo : ¬ ∀ x : ℝ, 2 ^ x ≥ x + 1 :) by
4 simp
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5 use (1 / 2)
6 rw [← Real.sqrt_eq_rpow, Real.sqrt_lt]
7 · norm_num
8 · norm_num
9 · norm_num

Lean has an ecosystem
of tools to find useful
theorems in the
mathematical
“standard library,”
such as “Loogle,” the
Lean version of
Haskell’s old search
tool “Hoogle.”
Yes, computer scientists
are bad at naming
things.

The simp tactic passes the negation through the quantifier like we did in the English proof, then we
suggest the example of 12 , and invoke two facts in one rewrite step. First is that 𝑥 12 = √𝑥, and second is
Lean’s version of the theorem we invoked. Then we just have to prove the three things in the list, which
were all obvious. We can use norm_num for obvious things, and that completes the proof.

6 Proof by Contraposition

Contraposition is a technique which takes advantage of the fact that the proposition 𝛲 ⟹ 𝑄 is
logically equivalent to ¬𝑄 ⟹ ¬𝛲. When one direction is very hard to prove, it’s possible the other
direction is simple. We can use contraposition on a hypothesis hwith the Lean tactic contrapose h.

6.1 Proof that 5 doesn’t divide factors if it doesn’t divide their product

This was an example from one of the lectures, which would probably be hard to prove without con-
traposition. Proving a negative is difficult, but the contraposition of this theorem becomes simple. The
English proof is below.

Theorem 6. If 5 ∤ 𝑎𝑏 then 5 divides neither 𝑎 nor 𝑏.

Proof. The contraposition of this theorem is that if 5 ∣ 𝑎 or 5 ∣ 𝑏, then 5 ∣ 𝑎𝑏. If we prove the contraposi-
tion, then we’ve proven the original theorem. We can do this by cases.
Case I. 5 ∣ 𝑎 By definition of “divides” there exists some 𝑘 such that 5𝑘 = 𝑎. Then 𝑎𝑏 = 5𝑘𝑏 and

5 ∣ 𝑎𝑏 by definition of “divides.”
Case II. 5 ∣ 𝑏 By definition of “divides” there exists some 𝑘 such that 5𝑘 = 𝑏. Then 𝑎𝑏 = 5𝑎𝑘 and

5 ∣ 𝑎𝑏 by definition of “divides.”
In either case, 5 ∣ 𝑎𝑏, so we have proven the contraposition is true.

In class, we used the magic words “without loss of generality” to sidestep the repetition in Case II.
There are ways to do this in Lean (usually via the wlog tactic) but this is a simple example and wlog is
complicated. We’ll just prove both cases directly in Lean.

3 theorem contrapositiondemo {a b : ℤ}
4 (hab : ¬ 5 ∣ a * b)
5 : ¬ (5 ∣ a) ∧ ¬ (5 ∣ b) :) by
6 split_ands
7 · contrapose hab
8 simp_all
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9 obtain ⟨k, hk⟩ :) hab
10 dsimp [(· ∣ ·)]
11 rw [hk]
12 use k * b; ring
13 · contrapose hab
14 simp_all
15 obtain ⟨k, hk⟩ :) hab
16 dsimp [(· ∣ ·)]
17 rw [hk]
18 use k * a; ring

We start the proof with split_ands to break up the logical and in the theorem. To Lean, this gives
us two cases to prove. We still haven’t done any contraposition yet; this is just a technical step. In the two
blocks below that (lines 7 & 13) we do almost the same thing twice, just like in the English proof. We call
contrapose hab to get the contraposition of our hypothesis and goal, and then simp_all to eliminate the
double negatives Lean gave us. This proof also uses a new tactic, obtain, which works like have and gives
us some fact we know in the context of the proof.

Now hab tells us that 5 ∣ 𝑎 (or 5 ∣ 𝑏 in the other case). We destructure it using obtain on line 9 (15)
into a new variable 𝑘 and the hypothesis hk, which says 𝑎 = 5𝑘 (𝑏 = 5𝑘). Thenwe use dsimp to destructure
the “divides” relation found in our goal. (The dots are “placeholders” for the arguments.) Then our goal
becomes ∃𝑐 ∈ ℤ, 𝑎𝑏 = 5𝑐, andwe provide an example with use k * b (or use k * a in the other case). The
ring tactic just confirms the result will be an integer, since the integers are closed under multiplication.

7 Proofs by Induction

Lean makes induction proofs fairly easy. This isn’t very surprising; most “functional” languages like
Lean use recursion and induction very heavily under the hood. In Lean, the natural numbers themselves This is the first

example using the
natural numbers in
Lean. Because Lean
was written by
computer scientists, it
uses the (correct!)
convention that
ℕ = {0, 1, 2, 3, ...}, as
you can see in the
proof.

are defined recursively. We’ll look at one of the homework problems as an example.

Theorem 7. If 𝑛 is a natural number, then 3 ∣ 𝑛3 + 5𝑛 + 6.

Proof. By induction on 𝑛. If 𝑛 = 0, it is true because 3 ∣ 6. For the inductive step, if 3 ∣ 𝑛3 + 5𝑛 + 6 for
some 𝑛, then for some natural number 𝑘, 𝑛3 + 5𝑛 + 6 = 3𝑘 and

(𝑛 + 1)3 + 5(𝑛 + 1) + 6 = 𝑛3 + 3𝑛2 + 3𝑛 + 1 + 5𝑛 + 5 + 6
= (𝑛3 + 5𝑛 + 6) + 3𝑛2 + 3𝑛 + 6
= 3𝑘 + 3𝑛2 + 3𝑛 + 6
= 3(𝑘 + 𝑛2 + 𝑛 + 2),

which means 3 ∣ (𝑛 + 1)3 + 5(𝑛 + 1) + 6 by definition of “divides.” So it holds for any natural number
𝑛 + 1 as long as it holds for 𝑛, and we have proved it for all natural numbers by induction.
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To pull off an induction proof in Lean, we use the induction tactic. After we specify which variable
we’re doing induction on, this tactic needs us to prove two cases, “zero” and “succ n,” with “succ” being
the successor function. Here’s the code.

1 theorem inductiondemo {n : ℕ} : 3 ∣ n ^ 3 + 5 * n + 6 :) by
2 induction n with
3 | zero => norm_num
4 | succ n ih =>
5 obtain ⟨k, hk⟩ :) ih
6 dsimp [(· ∣ ·)]
7 let c :) k + n ^ 2 + n + 2
8 have hn : (n + 1) ^ 3 + 5 * (n + 1) + 6 = 3 * c :) by
9 calc
10 (n + 1) ^ 3 + 5 * (n + 1) + 6 = 3 * k + 3 * n ^ 2 + 3 * n + 6 :) by linarith
11 _ = 3 * (k + n ^ 2 + n + 2) :) by linarith
12 use c

In this proof, the zero case is easy and only takes one line. Remember, norm_num handles easy arith-
metic, and the zero case just needs to show that three divides six. The next case on line four says succ n, or
𝑛+1, and ih, which is short for “inductive hypothesis.” It’s just the local assumption that the proposition
holds for 𝑛.

Line 5 destructures the inductive hypothesis into the assumption that 𝑛3 + 5𝑛 + 6 = 3𝑘 for some
natural number 𝑘. Thenwe use dsimp to destructure “divides” again. We name a variable 𝑐 and set it equal
to 𝑘+𝑛2 +𝑛+2, which we use in proving that (𝑛+1)3 +5𝑛+5+6 = 3𝑐, which by definition of “divides,”
tells us that the proposition holds for 𝑛 + 1 when it holds for 𝑛. The calc block jumps through all our
work in the English proof with two lines and the linarith tactic, which just solves linear equations and
applies basic algebra.

8 Conclusion

Here we’ve covered most of the proof techniques discussed in the class, with at least one formalized
example for each. They demonstrate what different kinds of proofs in Lean look like, as well as some
of the more powerful tools available. Working on this report also highlighted some of the difficulties of
working in Lean. Searching the Internet for help resources generally won’t be useful. Search engines like
Google aren’t optimized for math and there isn’t enough data yet for a search to be helpful. There are
message boards where communitymembers (usually professional mathematicians) are active and respond
to questions, and this appears to be the best way to seek help.8

Itwill be interesting to seewhereLean goes in the coming years, especially in the safety-critical software
space. Verifying that a program can always recover/never halts or faults is very important in aerospace,

8.The majority of the discussion happens here: https://leanprover.zulipchat.com/

leanprover.zulipchat.com
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automotive, andmedical applications. It also appears tohave somepotential inmathematics, withongoing
efforts to formalize large and cumbersome proofs that take a long time to check by hand.
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